

LAND IMPROVEMENT PROJECT DESIGN IN 3D

Kairi Juurik 24.05.2017

REAALPROJEKT OÜ fields of activity:

DESIGN WORK

Designing streets and roads

Railway design

Designing bridges and tunnels

Designing water and sewerage utility lines

Hydraulic engineering

Other utility works

EXPERT ASSESSMENTS AND SUPERVISION

GEODETIC WORKS

Topographic works and construction site geodesy

Land readjustment work

- GEOTECHNICAL INVESTIGATIONS
- 3D SURVEYS

INFRASTRUCTURE OBJECT 3D DESIGN (threedimensional design)

- Have been used in Estonia about 15 years
- Changed mainly in detail and working practices
- Significantly increased interactivity and automated information exchange
- Areas of use:
 - Roads
 - Land improvement (amelioration)
 - Facilities (culverts, bridges, viaducts)
 - Water and sewerage utility pipelines
- Due to inefficiency and lack of real need, today there is no use for cable lines designing.

• THEORETICAL BASE IS SAME, CHANGED IS TECHNICAL WORKING TECHNIQUES (USE OF COMPUTER)

- BASIC COMPONENTS
 - Plan solution (alignments)
 - Solution with elevations (longitudinal profile)
 - Typical cross-sections
- COMBINING BASE COMPONENTS HELPS TO PROVIDE MODELS FOR DIFFERENT PROJECT ELEMENTS

Example: DTM model in topographic plan and culvert

NB! INPUT FOR 3D DESIGN

- CORRECT and DETAILED topographic plan from existing situation
- Topographic plan does not automatically mean correct
 DTM
- 80-90% of the topographic plans today <u>is not</u> suitable for compilation of the DTM model and design
- The Financial savings from basic research will be leverage easily later in construction cost
- NB! 99% of Clients has no skills and ability to check DTM quality

- Aerial surveys using drones a surface model is achieved by photogrammetry.
 Enables to survey large areas quickly and with low costs.
- An alternative to drone is aerial survey data provided by the Land Board.

Aerial surveys using drones

Drone, UAV (Unmanned Aerial Vehicle), UAS (Unmanned)

Aerial System):

Multirotor complex

Airplane (fixed wing)

- Advantages:
 - Low costs
 - Flexibility
 - Effective
- Survey method:
 - Producing high resolution orthophotos
 - Laserscan (Lidar)

3D surface model from orthophotos

3D surface model.

• 3D view of the surface model.

Reaalprojekt

• Specified measurements on the site – utility networks (underground, terrestrial) and ditches, culverts, roads.

THE FINAL RESULT

- Topographic (geodetic) plan

THE FINAL RESULT

Detailed DTM (digital terrain model)

Example: PLAN (2D view)

Example: DITCH AND CULVERT IN 3D MODEL

Example: LONGITUDINAL PROFILE

Example: VOLUME CALCULATIONS (3D model)

<= Section for existing ditch (cleaning or deepening)

Section for new ditch =>

KR-PK727+37-A

Täname!

